
INTRODUCTION TO APPROXIMATION OF  
REAL CAUCHY PRINCIPAL VALUE (CPV) INTEGRALS 

 

 

Singular integrals of the Cauchy principal type occur abundantly in solar 

physics, hydrodynamics and contour integration. Aitkenson (1978) defines singular 

integral in the following way which is quite general. 

An integral (for simplicity one-dimensional integral) is said to be singular if 

the standard methods of numerical integration either do not apply or lead to slow 

convergence. This definition is from the point of view of Numerical Analysis. 

However, from mathematical point of view, we say an integral to be singular 

if either of the following is true. 

(i) The range of integration is infinite. 

(ii) The integrand possesses infinite discontinuity at the end points of 

integration or at an intermediate point. 

Both these types of singular integrals occur frequently in many branches of 

mathematical physics. It is noteworthy that the gamma function and beta function 

are singular integrals of the first and second types respectively. The following 

integral belongs to the category (ii). 
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where a < c < b is of some special importance because of its application and 

usefulness in the theory of aerodynamics and scattering theory. The function g in 

equn. (1) is a well behaved function in [a,b]. 
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The integral F(g) is said to be convergent if the following limit exist as  and 

 which are small positive numbers tend to zero independently. 
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If however, the above expression does not tend to a limit as  and  tend to 

zero independently, it may still happen that 
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may exist. When this is the case, we call this limit the Cauchy Principal Value 

(CPV) of the singular integral and denote it as 
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In equn. (3) when the positive number  tends to zero, if every contribution of the 

first integral is balanced by an equal and opposite contribution of the second 

integral inside the bracket, then the limit exists.  

 The exact evaluation of CPV integrals I(g,c) presents immense difficulties as 

the situation involves limits. Hence, enough importance and emphasis has been 

laid on the numerical evaluation of CPV integrals. Some of the popular methods 

for numerical evaluation of I(g,c) are due to Chawla and Jayarajan (1975), Hunter 

(1972), Iokamidis and Theocaris (1977), Elliott and Paget (1979), Monegato 

(1982), Paget and Elliott (1972), Price (1960), Theocaris and Kazantjakis (1981), 

Acharya and Das (1981) and so on. 
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 The 9-point and 4-point rules due to Price (1960) and the 3-point Gauss rule 

due to Hunter (1972) are often used for their accuracy and simplicity for the 

numerical evaluation of the CPV integral  
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It is pertinent to note that by a little modification of the integral I(g,c), we can also 

use the above mentioned rules even if c ≠ 0. This is done in the following way. 

 Let us consider the integral given by  
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where c ≠ (a+b)/2. Let ),( bdc where d=(a+b)/2. Then, we can write  
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where λ = 2c - b. By this the point c is the central point of the line segment joining 

λ and b. It is noteworthy that the first integral in equn. (7) is a definite integral 

(since c is outside the range of integration) whereas the second integral is a CPV 

integral. 

 By suitable transformation, equn. (7) can be written in the following way.  
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where h = b – c where of course (a+b)/2 < c < b. 

 

 Since the Price rules have 8
th

 degree precision, we can apply Gauss-

Legendre 4-point rule whose degree of precision is 9 for the approximation of the 
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definite integral in equn. (8) and either of the Price rules for the approximation of 

the CPV integral in equn. (8), even though the point c is different from (a+b)/2. 

However, if we apply Hunter’s 3-point rule for the approximation of the CPV 

integral in equn. (8), then the Gauss-Legendre 3-point rule can be applied for the 

numerical approximation of the definite integral in equn. (8).  

 

CORRECTIVE FACTOR FOR THE RULES FOR REAL CPV INTEGRALS  

It is known that presence of singularities near the path of integration affects 

the accuracy of the approximating rules. Lether (1977) has considered the 

following integral  
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and the exact value of this integral correct to nine decimal places is equal to  

313.172056239. The following table gives the value of the integral I1 when 

evaluated by n-point Gauss rules. 

   Table 1 

N Approximate value 

2 7.02 

3 8891.32 

4 13.24 

 

The failure of the Gauss rules in case of the integral I1 given by equn. (9) is solely 

due to the presence of nearby singularities viz. z = + 10
-2 

i of the integrand in the 

integral. It is quite natural that presence of nearby singularities in case of the 
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numerical evaluation of real CPV integrals also affects the accuracy of the 

approximating rules. One instance in this connection is the following CPV integral: 
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Acharya and Das (1981) have determined some corrective factors for the 

rules meant for the numerical computation of real CPV integral if nearby 

singularities of the integrand are present as is the case in example given in equn. 

(10). 

Here the following real CPV integral is considered:  
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Let b be the only isolated singularity (pole) of order one of the complex function 

g(z), the analytic continuation of g(x), which is close to [-1,1]. Let further p(z) be 

the principal part of f(z) in the Laurent series expansion of the function f(z) in an 

annular region about the point z = b. The principal part of g(x) is given by  
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where g(x)=h(x)(x-b) is obtained by factoring out (x-b)
-1

 from g(x). 

 

Then, (x) given by  
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is a regular function in  the  disk  centered about x = 0 of radius r > 1. Now equn. 

(12) implies that  

../References/Acharya%20and%20Das%201981_A.pdf


  ).,(),(),( cpIcIcgI             (13) 

If R(,c) is a rule meant for the numerical approximation of the CPV 

integral I(,c), then from the above equation, we have the following approximation 

 ).,(),(),( cpIcRcgI             (14) 

Using equn. (11) in I(p,c), the following is obtained after simplification. 
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consequently the equn. (14) boils down to  
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 If the m simple poles of g(z) which are close to [-1,1] are b1, b2, …, bm then 

the approximation R(g,c) to the CPV integral I(g,c) is obtained by the 

generalization of equn. (16) in the following form. 
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where the function x is obtained by subtracting out the principal parts 

corresponding to bj , j=1(1)m from g(x) i.e.  
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and the value h(bj) is obtained by evaluating g(x) ignoring the factor x-bj in the 

denominator of it. 



 In particular if  
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where  is a small positive number, then the two nearby singularities of g(z) are 

simple poles b1=i and b2 = -i Then the desired approximation to the real CPV 

integral I(g,c)is given by  
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where  
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 Most of the real CPV integrals with nearby singularities are of the form 
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where -1 < c < 1. While making the program formulation implementing a rule for 

the numerical evaluation of the CPV real integral given by equn. (23), we shall 

take into account the equns. (20) to (22) stated above. 


