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Abstract. We investigate the effects of spacetime curvature on the gravitational redshift in 

dark matter-admixed quarkyonic stars using the effective relativistic mean-field (E-RMF) 

approach. These compact objects, known as neutron stars, are characterized by a mixture 
of quarkyonic matter and fermionic dark matter (DM) and exhibit distinct gravitational 

properties because of the combined stiffening and softening of the equation of state. We 

analyze the Kretschmann scalar curvature ratio (𝐾(𝑅)/𝐾⊚) to obtain the gravitational 

redshift at the stellar surface as a function of dark matter content and transition density. 

Our results show that dark matter significantly enhances the gravitational potential, leading 

to a stronger redshift near the star’s surface. Stars with higher DM Fermi momenta 

(𝐾𝑓
𝐷𝑀=0.03, 0.04 GeV) exhibit larger curvature ratios compared to purely baryonic stars. 

These effects provide distinct signatures differentiating dark matter-admixed quarkyonic 

stars from normal neutron stars. 
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Gravitational redshift 
 

1.  Introduction  

 Neutron stars (NSs) are among the most compact and dense objects in the 

Universe, distinguished by their exceptionally high core densities and solid 

crusts. These extraordinary properties allow them to sustain persistent 

deformations, making them potential sources of gravitational waves (GWs). 
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The extreme conditions within NSs provide a natural laboratory for testing 

theories of matter in high-density and strong-gravity environments [1, 2]. 

Primarily composed of neutrons, NSs also contain smaller proportions of 

protons and leptons. At higher densities, exotic matter—such as hyperons, 

meson condensates, or deconfined quarks—becomes possible within their 

cores. As highlighted in our previous work [3], significant progress has been 

made in constraining NS properties due to recent observational 

advancements. Precise mass measurements exceeding and radius 

constraints from events such as GW170817 [4, 5, 6, 7], together with 

NICER pulsar X-ray data [8, 9], have imposed stringent limits on EOS. For 

example, the radius of a canonical NS 1.4 𝑀⊚ is now restricted to be below 

13.5 km [10, 11]. Furthermore, observations of high-mass pulsars, such as 

PSR J0952-0607 and J0740+6620, with masses of 2.35 ± 0.17 𝑀⊚ and 2.08 

± 0.07 𝑀⊚, respectively, offer additional EOS constraints [12, 13]. These 

findings have helped the development of theoretical models, such as the 

quarkyonic matter framework, which postulates a transition between 

nucleonic and quark phases within NS cores. This model envisions quarks 

as quasi-particles emerging at high densities, significantly influencing the 

EOS and pressure profiles [14, 3]. In our earlier study [3], we adopted this 

approach to investigate how dark matter (DM) and quark matter affect the 

EOS and macroscopic NS properties, exploring the interplay between 

nucleonic, quark, and DM components. 

 

The inclusion of DM in NS models is partly motivated by the GW190814 

event, which involved the merger of a black hole (22.2–24.3 𝑀⊚) with a 

secondary compact object of 2.50–2.67𝑀⊚  [15]. This enigmatic secondary 

object, potentially the most massive NS or the lightest black hole observed, 

suggests the possible presence of DM within NSs. The extent of DM capture 

within NSs influences key properties, such as mass, radius, and tidal 

deformability (Λ) [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. In 

this work, we consider non-annihilating weakly interacting massive 

particles (WIMPs) as the DM candidates, whose inclusion softens the EOS, 

reducing the NS’s mass and radius. Using the Effective Relativistic Mean-

Field (E-RMF) theory—a robust framework for modelling dense nuclear 

matter—we extend the formalism to incorporate both quark matter and DM. 

This allows us to analyze their combined effects on NS structure. Our study 

focuses on impact of curvature properties on redshift of quarkyonic NSs 
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with DM, employing the G3 [30] and IOPB-I [31] parameter sets, known 

for accurately reproducing finite nuclear properties and aligning with 

observational constraints, including mass, radius, and tidal deformability 

[30, 31, 3, 32, 33]. Furthermore, the gravitational redshift is a fundamental 

phenomenon that arises from the intense gravitational field of neutron stars, 

where emitted radiation experiences a shift towards longer wavelengths as 

it escapes the star’s strong gravity. This redshift directly indicates the 

compactness of the star, defined as the ratio of its mass to radius, providing 

crucial insights into the density matter equation of state (EOS). For a 

neutron star, the redshift is expressed as 𝑧 =  (1 − 2𝐺𝑀/𝑅𝑐2)−1/2 − 1 where G 

is the gravitational constant, M is the mass of the star, R is its radius,  and c 

is the speed of light. As measured by NICER, observations of redshifted 

spectral lines from the surface of neutron stars can constrain the star’s mass 

and radius, narrowing down the EOS and play a critical role in energy 

spectra of the emitted radiation, making it a valuable tool for probing 

spacetime curvature and the extreme physics governing neutron stars [34, 

35]. The geometry of spacetime surrounding NSs offers critical insights into 

the EOS of dense matter. 

 

Curvature measures, such as the Ricci scalar, Kretschmann scalar, and Ricci 

and Weyl tensors, describe spacetime warping caused by the star’s immense 

compactness [34, 35]. Mathematically, spacetime curvature is described by 

the Riemann tensor, which encapsulates tidal forces and deformation. 

Derived quantities, such as the Kretschmann scalar (curvature magnitude), 

Ricci tensor (volumetric changes), and Weyl tensor (shape distortions), 

provide comprehensive curvature metrics [36, 29]. Recent studies, such as 

those of Eksi et al. [37] and Xiao et al. [35], demonstrate that the symmetry 

energy has a strong dependence on the curvature in low-mass NSs, 

decreasing in their higher-mass counterparts. Our recent work [38] also 

explores the impact of anisotropy on NS surface curvature and provides 

approximate relationships linking curvature with tidal deformability and 

moment of inertia. 

 

This paper is structured as follows: Section 2 outlines the theoretical 

framework, focusing on the E-RMF approach and its extensions for quark 

matter and DM. Section 3 presents the study’s findings, while Section 4 

provides concluding remarks. 
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2. Effective Relativistic Mean Field Approach 

 

The effective relativistic mean-field (E-RMF) formalism is a robust 

theoretical framework for studying both finite nuclei and infinite nuclear 

matter (NM) [32, 39, 33, 40]. Its parameters are carefully tuned using a 

broad range of experimental and empirical data. More than 200 parameter 

sets have been developed to replicate various experimental and 

observational results [41, 42, 43, 44, 45, 46, 47, 48, 49, 31, 50]. For this 

study, we used the E-RMF model, thoroughly detailed in Refs. [29, 51, 52, 

53, 54]. The inclusion of leptonic contributions is essential to maintain the 

stability of neutron stars. Consequently, the energy density  and 

pressure   for a system composed of NM and leptons are derived using 

stress-energy tensor methods [54], 

 

 

                

                

                

                

                 (1) 

 

and 
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   (2) 

where,  and M denote the spin degeneracy and nucleon mass, while  , 

 ,  , and  represent the meson masses. The coupling constants  , 

  and  correspond to interactions with these mesons. Additional 

parameters like  , , ,  , , , and   describe meson self-

interactions and cross-couplings [55, 56, 57, 58, 59, 54, 31]. 

 

2.1. Quarkyonic Model 

 

The quarkyonic model, proposed by McLerran and Reddy [60], describes a 

transition to a phase where nucleons break into quarks at densities far 

exceeding nuclear saturation density. This transition is marked by a 

significant pressure increase due to quark population in low-momentum 

states when baryon density surpasses a critical threshold (transition density). 

In this phase, quarks occupy low-momentum states, while nucleons 

dominate near the Fermi surface, with their momenta scaling with the QCD 

confinement scale,  . Zhao and Lattimer [14] refined this model by 

incorporating beta-equilibrium and charge neutrality, along with density-

dependent nucleon interactions. They also introduced chemical equilibrium 

between nucleons and quarks, linking nucleonic (  ) and quark (  ) 

Fermi momenta. Nucleons occupy a finite Fermi shell, bounded by lower (

 ) and upper (  ) Fermi momentum limits. Quark Fermi momenta 

are similarly defined as and . A detailed analysis of this framework 

can be found in our recent study [3]. The quarks energy density  and 

pressure  can be expressed as [14, 3], 

 

  (3) 

and 

 

  (4) 
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2.2. Dark Matter Model 

 

The dark matter Lagrangian density [22, 27, 26, 3] is constructed based on 

the interaction of DM particles with both nucleons and quarks channelling 

through Higgs exchange, which is defined as, 

 

 .  (5) 
In this model,  and  represent the wave functions of the Dark Matter (DM) 

particle and nucleons, respectively. The interaction between the Higgs 

boson and nucleons follows a Yukawa-type coupling, characterized by the 

coupling constant  , which corresponds to the proton-Higgs form factor. 

We assume the Neutralino as the DM particle with a mass  of 200 GeV. 

The parameters y and f are chosen as 0.07 and 0.35, respectively, based on 

constraints derived from experimental and empirical data. Additionally, the 

mass of the Higgs boson ( ) is fixed at 125 GeV, while its vacuum 

expectation value ( ) is set to 246 GeV. 

 

Using the mean-field approximation the energy density and pressure for the 

DM can be expressed as  [22, 26, 27, 28, 62, 63, 64], 

 

  (6) 

and 

  (7) 

where  is the DM Fermi momentum. 
 

2.3. The Complete Model for Dark Matter-admixed Quarkyonic 

Neutron Star 

 

The total energy density and pressure of a DM-admixed quarkyonic star are 

then given by: 

  (8) 

and 

 

  (9) 
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Here,  ,  , and  denote the energy densities of baryonic matter, 

quark matter, and dark matter, respectively, while  ,  , and  

represent their corresponding pressures. These quantities are derived from 

their respective Lagrangians and combined to obtain the total energy density 

 and pressure , which are then utilized in the TOV equations to determine 

neutron star properties. The sharp phase transitions between quark and 

nucleonic matter often introduce discontinuities in the equation of state 

(EOS), which are smoothed out using Gibbs’ criteria. The complete 

methodology is detailed in our previous works [3, 65]. 

 

2.4 Mass and Radius of the NS 

 

We determine neutron star (NS) observables such as M and R by solving 

the Tolman-Oppenheimer-Volkoff (TOV) equations. For this, the equations 

of state (EOSs) of NSs incorporating dark matter (DM) are utilized as inputs 

to the TOV equations [66, 67, 3], which are expressed as: 

 

  (10) 

 

and  

 

  (11) 

 

Here,  and   ,  represent the total energy density and pressure, 

respectively, as functions of the radial distance r. The term   

corresponds to the gravitational mass enclosed within a radius r. These 

coupled equations are solved simultaneously to determine the mass and 

radius of the neutron star for a given central density. Furthermore, in the 

study of neutron stars (NS) and general relativity, four types of curvature 

are used to describe the structure of space-time both inside and outside of 

stars. These four curvature measures are the Ricci scalar ( ), Ricci tensor (

 ), Kretschmann scalar ( ), and Weyl tensor ( ). The details of the 

corresponding mathematical expression can be found in Refs. [37, 35, 29] 

and also in Appendix A.  
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3. Results and Discussions 

 

This section explores the impact of various exotic components within a 

neutron star, studied through different types of spacetime curvatures. In our 

earlier work [3], we introduced the quarkyonic framework defined by two 

key parameters: the transition density (  ) and the QCD confinement scale 

( ). The parameter nt determines the onset of quark formation, while  

acts as a momentum-scale cutoff distinguishing nucleons from quarks. 

Furthermore, the quarkyonic star model is extended to include the influence 

of dark matter (DM) by varying the DM Fermi momentum ( ), enabling 

a thorough investigation of its effects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1: The ratio of the Kretschmann scalar surface curvature of NS and 

the Sun  with the gravitational redshift at different transition 

densities, such as , keeping the DM Fermi 

momentum  and confinement scale parameter ( ) at 0.00  and 

800  respectively for G3 and IOPB-I sets. 
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In Fig. 1, we have computed the variation of  with the 

gravitational redshift, where the Sun’s surface curvature ( ) is 3.06 × 10 
−27 cm-2 . We noticed that the curvature ratio increases with  for all cases, 

with DM-admixed stars exhibiting higher ratios compared to baryonic stars, 

indicating the significant role of DM in enhancing spacetime curvature. 

Higher DM Fermi momenta (  = 0.03, 0.04 GeV) result in progressively 

larger curvature ratios, reflecting the stiffening effect of DM on the 

quarkyonic EOS. The G3 force produces consistently higher curvature 

values than IOPB-I. The relative differences between baryonic and DM-

admixed curves are more pronounced for G3 than IOPB-I, reflecting 

variations in the interplay of quarkyonic matter stiffness and DM softening 

between the two forces. Gravitational redshift, as a probe of 

compactness, effectively captures the impact of DM admixture on neutron 

star curvature properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The ratio of the Kretschmann scalar surface curvature of NS and 

the Sun  with the gravitational redshift at different transition 
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densities, such as , keeping the DM Fermi 

momentum  and confinement scale parameter ( ) at 0.00  and 

800  respectively for G3 and IOPB-I sets. 

 

Further, we have extended our analysis, by varying the transition densi- 

ties, such as  = 0.3, 0.4, 0.5  as they are crucial in the formation of a 

quarkyonic core. In Fig. 2, the same is presented as in Fig.2, but with the 

change in transition densities. From the analysis, it is noticed that for G3 

set, at  = 0.3  , the curvature ratio consistently rises with increasing 

gravitational redshift, maintaining a steeper slope than higher transition 

densities. At = 0.4  , the slope decreases slightly, reflecting a lower 

value of surface curvature. At  = 0.5  , the ratio grows more gradually, 

indicating a softer EOS effect at higher transition densities. For IOPB-I 

EOS, Similar trends are observed, but the absolute values of the ratio are 

generally lower compared to G3. Moreover, The dependence of surface 

curvature on transition density (  ) emphasizes the sensitivity of NS 

properties to the EOS parameters. 

 

4. Conclusions 

 

In conclusion, we carried out a comprehensive analysis of the curvature 

properties of quarkyonic stars, focusing on the impact of dark matter within 

the effective relativistic mean-field (E-RMF) framework. The study 

examined gravitational curvature quantity such as the Kretschmann scalar 

(K) which offers valuable insights into the strong-field regime of general 

relativity and the internal structure of neutron stars. The calculations utilized 

two well-established nuclear parameter sets, G3 and IOPB-I, which are 

characterized by their differing stiffness in modeling the equation of state 

(EOS) for dense nuclear matter. The presence of DM within neutron stars 

significantly enhances their spacetime curvature. This is evident from the 

ratio of the Kretschmann scalar surface curvature of the neutron star to that 

of the Sun . Stars with higher DM Fermi momenta (  = 0.03, 

0.04 GeV) exhibit larger curvature ratios compared to purely baryonic stars. 

This enhancement reflects the stiffening effect of DM on the quarkyonic 

equation of state (EOS). Gravitational redshift, as a measure of 

compactness, effectively captures these variations, showcasing the interplay 

between DM and spacetime curvature. Furthermore, the choice of nuclear 

force also influences the curvature properties. The G3 (soft) force produces 

consistently higher curvature values than the IOPB-I (stiff) force. Again, the 
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transition density (  ) plays a critical role in shaping neutron star curvature. 

Lower transition densities ( = 0.3  ) lead to steeper increases in the 

curvature ratio with gravitational redshift, reflecting a stiffer EOS and a 

more compact structure. 

 

Appendix A: Mathematical expressions for various curvatures 

 
In the study of neutron stars (NS) and general relativity, four types of 
curvature are used to describe the structure of space-time both inside and 
outside of stars. These four curvature measures are the Ricci scalar ( ), Ricci 
tensor ( ), Kretschmann scalar ( ), and Weyl tensor ( ). The 
corresponding mathematical expressions are given as follows, the Ricci scalar, 
 

  (1) 

 
the square root of the full contraction of the Ricci tensor is defined as  
 

  (2) 
 
the Kretschmann scalar is defined as the square root of the full contraction of 
the Riemann tensor. 
 

 

               =  

                     (3) 

  
and the square root of the full contraction of the Weyl tensor 
 

  (4) 

Here  , ,  are the energy density, pressure, and mass of the NS as 
a function of radius respectively. The  and  curvature are present inside 

and outside of the star i.e. in a vacuum. Contrary to this  and  are only 
confined within the star. More details can be found in Refs. [37, 35, 29]. 
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