Orissa Journal of Physics ISSN 0974-8202

© Orissa Physical Society

2

Vol. 30, No. 1 February 2023 pp. 25-30

Studies of Structural and Dielectric Properties of (Bi_{0.95}Mg_{0.05})(Fe_{0.95}Zr_{0.05})O₃ Electroceramics

N P SAMANTRAY^{*}, B B ARYA, L. DHAL and R N P CHOUDHARY

Multifunctional Materials Research laboratory, Department of physics Siksha 'O' Anusandhan (Deemed To Be University), Bhubaneswar-751030 Email: npsamantray@gmail.com

Received : 5.12.2022 ; Accepted : 4.01.2023

Abstract. The polycrystalline sample $(Bi_{0.95}Mg_{0.05})(Fe_{0.95}Zr_{0.05})O_3$ was synthesized using solid-state reaction method. The room temperature X-ray diffraction analysis confirms the sample is formed in a single phase rhombohedral structure. The dielectric properties of the sample has been studied varying the frequency from 1 kHz to1000 kHz and temperature from $25^{\circ}C$ to $500^{\circ}C$ which provide some important properties of the prepared sample.

Keywords: multiferroics; solid-state reaction; dielectrics; polarization.

1. Introduction

The multiferroics materials are the materials which have the ferroelectric, ferromagnetic, and also ferroelastic behavior in a single phase simultaneously (1,2). Becaause of huge applications in sensors, transducers, energy harvesting devices, transformers, magnetic memories, and microwave and spintronic devices, more attentions are drawn for synthesis of multifunctional materials. Among the different lead free multiferroics materials, BiFeO₃ is one of the most widely used multiferroics material having a perovskite (ABO₃) rhombohedral structure and R3c space group symmetry. BiFeO₃ posses higher values of Curie temperature ($T_c = 850^{\circ}$ C) and Neel temperature($T_N = 370^{\circ}$ C) (3). Again it has both magnetic and ferroelectric orders above room temperature. But still many inherent problems are faced in BFO because of high leakage current. In recent past, suitable materials are synthesized to overcome the above mentioned problems of BiFeO₃ by doping other elements at the Bi and Fe sites (4-6). Doping of La³⁺, Eu³⁺, Gd³⁺, Sr²⁺, Ba²⁺, Ca²⁺ at Bi site of BiFeO₃ increases the

N P Samantray et al

ferroelectric behavior where as doping of Cr^{3+} , Ni^{3+} , Ti^{4+} , Zr^{4+} , Mn^{4+} at Fe-site improves the magnetic behaviors (7,8). In this work, we have tried to improve dielectric and ferroelectric behaviors of BiFeO3 by synthesizing solid solutions of $(Bi_{0.95}Mg_{0.05})(Fe_{0.95}Zr_{0.05})O_3$. In this communication, dielectric properties of $(Bi_{0.95}Mg_{0.05})(Fe_{0.95}Zr_{0.05})O_3$ electroceramics have been presented briefly.

2. Experimental

The desired sample ($Bi_{0.95}Mg_{0.05}$)(Fe_{0.95}Zr_{0.05})O₃ was prepared by mixed oxide method at a temperature of 850°C by taking analytical grade (purity>99.9%) oxides such as Magnesium Oxide (MgO), Bismuth oxide (Bi₂O₃), Iron oxide (Fe₂O₃), and Zirconium oxide (ZrO₂) procured from the M/S Loba Chemicals. Above ingredients weigh in a suitable stoichiometric ratio and were homogeneously mixed and ground for 4 h in air and then using methanol for another 4 h. Then the prepared sample was heated at various temperatures and finally heated at 850°C for 5 hours by cylindrical alumina crucible (M/S ANTS ceramics).

$$\begin{split} Bi_2 O_3 + MgO + ZrO_2 + Fe_2 O_3 \text{ (heat treatment at 800°C)} \\ &= (Bi_{0.95} Mg_{0.05}) \text{ (Fe}_{0.95} Zr_{0.05})O_3 \end{split}$$

The fine powder of calcinated sample was prepared and then homogeneously mixed by using one or two drops of PVA solution to prepare circular pellets with diameter about 1.2 cm and thickness about 0.1cm to 0.2 cm applying a hydraulic pressure of 4×10^6 N/m² by using KBR press (M/S Techno search Instruments Co.). The prepared pellets were sintered at 850°C for a period of 6 hours. The calcined powder of (Bi_{0.95}Ba_{0.05})(Fe_{0.95}Zr_{0.05})O₃ was used for the structural analysis to get the crystal data using Diffractrometer (Rigaku, Japan) which uses CuKa radiation ($\lambda = 1.5405 \text{ A}^\circ$) within Bragg angles (20) ranging from 20° to 80°. The sintered pellets were electroded by using a high-quality silver Paint (M/s Alfa Aesar) after polishing the surfaces for the dielectric measurements. The pellet was kept at a temperature of 120 °C for 2 hours before performing the experiments. The phase-sensitive meter (PSM) (M/S N4L model PSM 1735, UK) is used for various electrical measurements. The measurements were recorded within frequency range 1 kHz to1 MHz and temperature range 25°C to 500°C.

Studies of Structural and Dielectric Properties of (Bi_{0.95}Mg_{0.05})(Fe_{0.95}Zr_{0.05})O₃...

3. Results and Discussions

3.1. *Structural Study*

The X-Ray Diffraction pattern of the prepared polycrystalline sample ($Bi_{0.95}$ $Mg_{0.05}$) (Fe_{0.95}Zr_{0.05})O₃ at room temperature for 2 θ ranging from 20° to 80° is depicted in Fig1. The prominent diffraction peaks are indexed by using POWD software. The basic XRD data consists of all the prominent peaks and confirms that the sample is formed in a single-phase with a prominent impurity peak at $2\theta\approx29.18^{\circ}$ (marked as *). Using estimated lattice parameters a=5.5806A° and c= 13.8616A° of unit cell of rhombohedral crystal system indexing of all the prominent peaks were done by computer software POWD (9).

3.2 Dielectric Study

The anomalies obtained in the dielectric parameters curves confirm the ferroelectric behavior of the sample(10,11). All the information about different polarizations, relaxation process, cause of dielectric loss, etc can be obtained from dielectric study. The dielectric specimen gets polarized by applying an ac field. Because of polarization, the dielectric parameters of the specimen get changed. The relative permittivity (ε_r) of the sample can be measured at given frequency and temperature using the formula:

N P Samantray et al

$$\varepsilon_r = \frac{C_p t}{\varepsilon_0}$$

ł

Where C_p is parallel capacitance which can be obtained experimentally, t is thickness of the pellet used for measurement and ε_0 is permittivity of free space. The loss in the current component takes place due to temporal phase shift in the driving force and the electrical polarization in the sample. This in turn is the cause of tangent loss of the sample. Both relative permittivity and tangent loss of the material change with the frequency of the applied ac electric field and also on the temperature.

3.2.1. Dependence of dielectric parameters on frequency

Fig.2: Frequency dependence of dielectric parameters

The variation of the dielectric parameters (relative permittivity (ϵ_r) and tangent loss (tan δ)) of the sample (Bi_{0.95} Mg_{0.05}) (Fe_{0.95}Zr_{0.05})O₃, with frequency (1kHz to1000kHz) at constant temperatures (25^oC to 500^oC) is shown in Fig.2.The graphs confirm that the relative permittivity at lower frequency range has higher values and then starts decreasing with increase in frequency, hence dielectric dispersion takes place at lower frequencies. The decrease in permittivity (ϵ_r) as well as tangent loss (tan δ) with increase in frequency proves the general characteristics of dielectrics and ferroelectric behavior of the synthesized sample. Again different polarization processes such as dipolar polarization, atomic polarization, ionic polarization, space charge polarization and electronic polarization are the cause of such variation in dielectric

Orissa Journal of Physics, Vol.30, No.1 - February 2023

Studies of Structural and Dielectric Properties of (Bi_{0.95}Mg_{0.05})(Fe_{0.95}Zr_{0.05})O₃...

parameters. The small displacement produced because of these polarizations is the cause of the net polarization of the material (12). Such variations of dielectric parameters may be explained by a two-layer model given by Maxwell and Wagner (13).

3.2.2. Dependence of dielectric parameters on temperature

Fig.3: Temperature dependence of dielectric parameters

The temperature dependence of dielectric parameters of $(Bi_{0.95} Mg_{0.05})$ $(Fe_{0.95}Zr_{0.05})O_3$ electroceramics, are shown in fig 3. As observed for a particular frequency, relative permittivity (ε_r) increases with increase in temperature and attains a maximum value. The temperature for which permittivity becomes maximum is known as Curie temperature (T_c) (14). Again it is also observed that the maximum value of dielectric constant decreases with rise in frequencies. Similar trends are observed dependence of tangent loss on temperature is taken into consideration. The increase in tan δ is because of defects such as thermally induced motion of charge carriers, oxygen vacancies and presence of the impurity phase of the synthesized sample.

4. Conclusions

The electro-ceramics $(Bi_{0.95} Mg_{0.05}) (Fe_{0.95}Zr_{0.05})O_3$ was prepared by the solid state reaction route. The XRD spectral analysis confirms the sample is formed in a rhombohedral crystal system. The study of variations of relative permittivity (ε_r) and tangent loss (tan δ) with frequency and temperature confirms

Orissa Journal of Physics, Vol. 30, No.1 - February 2023

N P Samantray et al

the dielectric properties of the synthesized material. Because of higher dielectric constant and lower tangent loss, this material is very useful for various multifunctional electronic devices.

References:

- [1] H. Schmid, Ferroelectrics 162, 317 (1994)
- [2] S.N. Das, A. Pattanaik, S. Kadambini, S. Pradhan, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci. Mater.Electron. doi:10.1007/s10854-016-5084-2(2016)
- [3] W. Eerenstein, N.D. Mathur, J.F. Scott, Nat. Lond. 442, 759(2006)
- [4] J. Wei, R. Haumont, R. Jarrier, P. Berhtet, B. Dkhi, Nonmagnetic Fe-site doping of BiFeO3 multiferroic ceramics. Appl. Phys. Lett. 96, 102509 (2010)
- [5] Y. Wang, C.-W. Nana, Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films. Appl. Phys. Lett. 89, 052903 (2006)
- [6] Z. Wen, G. Hu, S. Fan, C. Yang, W. Wu, Y. Zhou, X. Chen, S. Cui, Effects of annealing process and Mn substitution on structure and ferroelectric properties of BiFeO3 films. Thin Solid Films 517, 4497–4501 (2009)
- [7] C. Behera, R.N.P. Choudhary, P.R. Das, J. Mater. Sci. Mater. Electron. 25, 2086 (2014)
- [8] M.S. Wu, Z.B. Huang, C.X. Han, S.L. Yuan, C.L. Lu, S.C. Xia, Solid State Commun. 152, 2142 (2012)
- [9] E W POWD, An interactive Powder diffraction data interpretation and indexing Program, Ver. 2.1, School of Physical Science, Finders University of South Australia, Bedford Park, S.A. 5042, Australia
- [10] A.R. West, D.C. Sinclair, N. Hirose, Characterization of Electrical Materials, Especially Ferroelectrics, by Impedance Spectroscopy, J. Electro Ceram. 1(1), 65–71 (1997)
- [11] S. Pattanayak, R.N.P. Choudhary, P.R. Das, S.R. Shannigrahi, Effect of Dysubstitution on structural, electrical and magnetic properties of multiferroic BiFeO₃ ceramics, Ceram. Int. 40, 7983–7991 (2014)
- [12] L.L. Hench, J.K. West, Principles of Electronic Ceramics (Wiley, New York, 1990)
- [13] R.P. Pawar, V. Puri, Ceram. Int. 40, 10423 (2014)
- [14] D.I. Shlimas, M.V. Zdorovets, A.L. Kozlovskiy, Synthesis and resistance to helium swelling of Li₂TiO₃ ceramics. *J Mater Sci: Mater Electron* 31 12903-12912(2020)
- 30 Orissa Journal of Physics, Vol.30, No.1 February 2023