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Abstract. Parametric resonance is a selective topic in mechanics with very 

limited instances of application. Of course, there are case examples of electric 

circuit and electromagnetic phenomena, mentioned in literature. There are recent 

reports of identification of occurrence of parametric resonance in acoustics, in the 

well-known Melde‟s Experiment and in passage of ultra sonic vibrations in fluid 

filled cavity. In our attempt to study the acoustics of conch shell, we observed the 

locking in of sound at odd harmonics of the fundamental and repeated our 

experiments with cylindrical tubes to confirm the finding. Although mode-

locking has been mentioned in classic texts like Philip Morse and N. Fletcher, 

explanation of the phenomenon looks lacking in literature. Therefore, in this 

paper we put-forth the theory of parametric resonance as an explanation of this 

well-known acoustic phenomenon. Vis-à-vis, we present a brief review of the 

literature to substantiate our stand. Further it is worth pointing out that existence 

of threshold driving amplitude, as observed in the experiment, ensues as a natural 

outcome of this formalism.  
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1. Introduction  

Parametric resonance is dealt in somewhat advanced course in mechanics. It is 

said to occur[1,2] when one or both of basic  parameters of an oscillator, namely 

mass and spring constant or their analogues are appreciably affected by the 

external  cause, eventually becoming time dependant. Therefore, the frequency of 

the system effectively turns out to be time-dependent. This is precisely presented 

by the oscillator equation. 

2

0 ( ) 0x t x         (1) 

One may add a damping component to equation (1), if frictional dissipation is 

present. Instances of case of resonance arising out of the solution of equation (1) 

are rather limited and occur in different branches of the physics. A couple of 

frequently cited examples in texts on mechanics [1,2] are (i) a simple pendulum 

whose support of suspension yields by executing vertical oscillation, there by 

affecting the acceleration due to gravity and consequently its frequency and (ii) 

the pumping in of a swing which is started oscillating by a by-stander with a 

small amplitude and then the rider amplifies the amplitude by alternately sitting 

and rising. 

 It also occurs in axially exited beams, slashing liquids and in parallel tuned 

circuits with time-varying capacitance [3]. Further, literature points out that 

parametric excitation has been observed in mechanical systems coupled to 

magnetic or electric components[4] and cites several references on these themes, 

in particular, parametric magneto-elastic resonance of a perfect elastic conductor 

in magnetic field[5]. In a similar system, the interaction between a time-

dependant magnetic field and elastic beam plate can lead to unstable vibration 

under certain magnetic field fluctuation frequencies[6]. Parametric resonance 

occurs also in acoustics in nonlinear string vibration as dealt by Rowland [7] and 

in passage of ultrasonic vibration in fluid filled cavity[8,9]. A more relevant 

report in our context is a work by Shyh Wang et.al[10]. dealing with parametric 

generation of acoustics wave and mode-locking in spin-waves through magneto 

elastic coupling. Even the nature of vibration of string in the most familiar 

Melde‟s experiment analyzed by Lord Rayleigh and C.V.Raman [11,12] has been 

identified rather recently [7] as a case of parametric resonance.  

 In our study of sound spectrum produced by lip-driven conch shell, we 

observed that the spectrum invariably contains peaks at 3f0 or 5f0. f0 being the 

fundamental frequency, along with over-tones at frequencies which are all 
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integral multiples of the peak frequency[13]. In order to confirm our observation 

we repeated our experiment with lip-driven pipe and horn where the spectra were 

again similar to the case of conch-shell. Such skipping of resonance to a higher 

over-tone is called mode-locking in literature. It is a well-known phenomenon in 

acoustics[14,15]. However, a satisfactory explanation of the effect is not found in 

literature. In the following section we present a brief review of such explanations. 

Hence in this paper we attempt to explain the phenomenon as a case of 

parametric resonance. Our formulation also provides the explanation for 

occurrence of threshold driving amplitudes for locking in at different frequencies. 

 In section-2 we present a brief review of different attempts for explanation 

of mode-locking from literature. Section-3 carries our parametric formalism for 

mode-locking. In section-4 we obtain the regions of instabilities for parametric 

resonance at different frequencies. Section-5 deals with the origin of threshold 

driving amplitude required for causing mode-locking at definite frequency. 

Section-6 carries our conclusion. 

2. Mode-locking: Its explanations 

 Giving his observation on mode-locking Phillip Morse in 1940‟s writes [14] 
 

“When the pipe is blown more strongly, the jet frequency is first held near the 

fundamental free frequency of the tube by the strength of coupling, but when the 

edge tone by itself would exhibit a frequency close to the third harmonic of the 

pipe, the note suddenly changes to this over-tone and “locks in” at the new 

frequency. The pipe is then said to be “overblown”. As indicated  XXX only the 

odd harmonics are present to any extent in the sound from a closed pipe; the 

dependence of the amplitude of the higher harmonics on the dimension of the 

driving jet of air and on the location and shape of the “lip” regulating the edge-

tone is too complex XXX”. However, somewhat detailed analysis of this 

„complex‟ effect is found in Fletcher‟s series of works[15,20]. 

 Its origin may be trace is traced in the interaction of the blown jet with 

the pipe mode at the pipe-lip and is attributed to jet - driven nonlinearly. The 

velocity profile of the jet is concluded to tend towards a smooth bell-shaped form 

that can be described by[15,16]
 

 

                                   (2) 
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where 0V  is the jet center- plane velocity and z, the co-ordinate transverse to the 

jet.  Here b is a scale factor determining the width of the profile, which varies 

along the jet. If h be the  jet tip displacement, and 0h , the lip offset from the 

undisturbed center plane of the jet, the expression for flow of jet, jU , as a 

function of V , h and b is given by 


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j  ,  (3) 

where w is the jet width in its transverse plane. The shape of jet flow is 

graphically demonstrated in the text to match with the given description. 

Excitation modes dependent upon the lip-offset is also depicted as relative level 

of harmonics in an organic pipe. Such conditions may lead to quenching of 

certain harmonics and appearance of some other. This qualitatively accounts for 

the mode locking.  

Further, a more rigorous mathematical treatment of the phenomenon is 

found in Fletcher‟s 1978 work[19]. It is stated at the outset that in-harmonically 

related sounds can be produced on most wind instruments, whereas their normal 

tones may sound with accurate harmonics, locked in both phase and frequency to 

the fundamental. And the paper aims at tracing out the features which cause  

mode „locking‟. In order to account for that, the author puts forth a general 

treatment, which is defined to be valid for both string and wind instruments. 

 The basic equation for the i
th
 mode is given by  

                                    jiiiiii xFxxkx   
2

,         (4) 

where ix  is the generalized co-ordinate associated with the i
th

 mode and ix ,the 

corresponding generalized velocity, i  is the coupling strength.  jxF   is the 

generalized velocity dependent driving force. In putting forth the mechanism, the 

author argues that there is a phase delay i consequent due to the blow- jet & the 

pipe mode interaction. This phase delay is built into ix  and  jxF  , identified as 

the acoustic flow velocity and driving pressure respectively. 

 In order to solve equation (4), Fletcher implements Bagoliubov- 

Mitropolsky‟s technique to finally arrive at the mode locking condition, 
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                                    ijji pqqp   
,        (5) 

where ϕ and ω are the phase and frequency of the respective modes. Although the   

exercise is exhaustive, it does not clearly expose the conclusion of mode locking 

to satisfactorily explain the observation. 

 Beside, at the concluding part of the paper, in way of discussion, the author 

specifies a number of conditions as requirement for mode locking. They are, 

1. The integers p and q specifying  the relations between the modes must be 

small, i.e. p + q < 4 

2. The sounding frequencies and the mode frequencies must be 

harmonically related. 

3. The Coupling between the two modes and the driving force must be 

large. 

4. The driving force must be highly non-linear. 

5. The mode amplitude must be large. 

Out of these requirements, although condition (2) to (5) might be qualitatively 

borne out in blowing of pipes and conch shell, one of the most significant 

numerical  condition (1) is clearly not valid for locking of 5
th
 mode, where for the 

fundamental mode p = 1 and for the locked in mode, q = 5, so that p + q = 6 and 

greater than 4. 

 One more important fact not explained by any of the existing theory is that, 

the „locking-in‟ occurs, in blowing pipes and conch shell, as we have observed, at 

an odd multiple of apparatus fundamental of which, samples of spectrum and 

data  we present in the following (figure 1 a-c, and table-1). 

 Certain notes on the data in the table and their process of collection are in 

order here. In the experiment, sound from lip driven pipe was received with 

microphone  and analyzed with sound technology FFT software (Spectra Plus). 

Only three slides of spectrum view of sound from lip-driven pipe of 110 cm. 

length and diameter 1.9cm are presented here as sample for inspection. 

Therefore, the data table-1 carries observation of peak frequencies of sound from 

lip-driven pipes of 11 different lengths and blown at varying pressures. All the 

frequency data are collected from computer display, as exhibited in the sample 

spectral views.  



SK Rath and PC Naik
 

 

Orissa Journal of Physics, Vol. 26,  No.1, February 2019 22 

 

Fig. 1(a).  Spectrum view of lip driven pipe of length of 110cm. & diameter 

1.9cm. 

 

Fig. 1(b). Spectrum view at higher pressure with shifted frequency at 

the same tube  length of 110 cm. 
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Fig. 1(c). Spectrum view at more higher pressure with shifted 

frequency at the same tube  length of 110 cm. 

 

Table 1 . Measured peak frequency for different length and diameter of pipes. 

Length of 

Pipe(l) in 
cm. 

C/4l 

in 
Hz 

Measured peak frequency in Hz. 

Diameter of 

pipe 1.3cm. 

Diameter of pipe 

 1.9cm. 

Diameter of pipe 

2.5cm. 

150 57.5 291.5,398.4 291.5,395.51 172,290 

140 61.6 312.01,437.3 312,430 183.1,309 

130 66.3 335,471.60 333.98,455.57 200, 332 

120 71.8 363,503.90 216,354,496 216, 360 

110 78.4 394,553 238.77,392.58,546.39 244,396 

100 86.2 254,435 262,421 262.2,432 

90 95.8 288,483 287.11,468.75 96.2,290 

80 107.8 319.3,541 328,540 109,322 

70 123.2 375,608 366.21,580.08 120.12,360.35 

60 143.7 436.5,719 424,709 140,420 

50 172.5 517.09,861 177.25,511.23 175,512 

* C= 345m./sec is the velocity of sound and l is the length of tube.    
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One should not be tempted to jump into a simple-minded conclusion at 

this stage that the odd multiple of the „lock-in‟ frequency occurs due to the close-

open nature of the tube. Details of the spectra on scrutiny show that in lip-driven 

wind instrument like the pipes, horns and conch shell, the spectra exhibit 

overtones with frequencies, which are all integral multiples of the lock-in 

frequencies. This compels us to suggest that the lip-driven instruments 

simultaneously behave as closed-open and open-open system. This technically 

amounts to rapid change of the impedance sinusoidally at the tube-lip[2].      

Therefore, in order to explain our observations of „locking-in‟ in pipes, 

conch shell and elsewhere, we present in the next section, an alternative and 

relatively simpler theory of the phenomenon in light of parametric resonance.  

3.  Parametric Formalism for Mode Locking 

Parametric resonance has been mentioned in the introduction to follow equation 

(1), involving a time dependent frequency ω(t), through time dependence of both 

or either of the system parameters of inertia, m and the restoring constant, k. 

Here, in case of a resonating column of air in pipe or horn, the independent 

parameters are bulk modulus K and density ρ of the air mass.  Excitation of a 

tube or horn by blowing affects the density of air mass in the cavity as an 

instantaneous effect. If the blowing pressure is time dependent, it causes the air 

density time dependent too.  It is a well known  result of the theory of resonant 

cavity that the frequency 1

2

K
f

 
 .  If ρ is ρ (t), the frequency ω is also time 

dependent i.e. ω = ω(t).  Hence parametric resonance may occur in a resonant 

cavity.  

The form of ω(t) is usually decided by the conditions of the problem. But 

in many cases and particularly for our case, since the external excitation, i.e. lip 

vibration is periodic, it is appropriate to assume ω(t) as a periodic function. Let 

its frequency be Ω and period  
2

T





 . Hence it is possible to choose solutions 

of equation (1) as x1 and x2, the transformation of which under t t T   will 

lead to general form 

   

   ttx

ttx

T

t

T

t

22
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


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
    (6) 
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with positive and negative  real values of  constant  1  where ϕ(t)‟s are 

purely periodic functions of time with period T. This causes, the system instable 

and as it grows, one of the solutions grows rapidly, which is onset of the 

resonance. 

 In order to determine the condition of resonance let us explicitly assume 

ω(t), as 

    2 2

0 1 cost h t    .    (7) 

 Here h is a parameter physically related to the driving amplitude of 

vibration.  On insertion of this form of ω(t), the oscillator equation (1) reads,  

 2

0 1 cos 0x h t x    .    (8) 

A general form of the equation is  

 2

0 2 cos 0x a q t x        (9) 

which is well known as Mathieu‟s equation, with 02
a

 
  

 
. 

 The solutions of Mathieu‟s equation are “Mathieu‟s functions”.  They can be 

expressed only as infinite series.  Using numerical integration of equation (9), the 

boundary lines between stable and unstable solutions are plotted (figure 2). 

 

 

 

 

 

 

 

 

 

 

  
Fig. 2. Standard Plot of regions of instability of Mathieu‟s functions.  
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It may be noticed that for 02  , (a =1) there is no stable region at all.  

An arbitrarily small driving amplitude q will drive the system to parametric 

resonance. Hence parametric resonance is strongest if the frequency of the 

function  t  is nearly twice 0 . Hence, let us put, 02 ,     where 0 

. 

Therefore the oscillator equation (9) goes to 

  2

0 01 cos 2 0x h t x                 (10) 

Its solution has been sought in the form  

     0 0

1 1
cos sin

2 2
x t a t t b t t   

   
      

   
       (11) 

Hence resonant mode with natural frequency of 0  is the simplest 

possibility.  Of course, this is a case of parametric resonance where the amplitude 

at the natural frequency is amplified.   The case of pumping of a swing seems to 

confirm as manifestation of this solution. However, Landau & Lifshitz clearly 

state that the solution in equation(11) is not exact.  The solution x(t) involves 

terms with frequencies which differ from  
0

1

2
   by integral multiples of 

 02  ,  i.e. sine and cosine terms with arguments  0 0

1
2

2
n t  

 
   

 
, 

with n=1, 2, 3….  But such terms involve coefficients as we will see below, 

which are of higher order in the parameter h; and hence they are, in the instances 

of mechanics, neglected.    Not only that, even in the case of pendulum, whose 

point of support oscillates vertically is pointed out not to oscillate;  it rather is set 

to spin.   

Here we identify the presence of the term with frequencies around 03 , 

05  etc. as the signals of onset of mode locking in acoustic systems. We may go 

further to assume, instead of remaining fixed at very small value h, the driving 

amplitude, in lip blowing may be increased by increasing the blowing pressure. 

Hence, the higher order terms succeed and predominate, than remaining 

negligible. We would also see in the following that the process is further assisted 

by the presence of damping in the oscillating air column, which would explain 
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the requirement of threshold amplitude, and possibly also that of stability of 

mode-locking.   

4.  Derivation of Range of Instability 

We present in the following the outlines of calculations and results of range of 

instability (or regions of resonance) for solutions in successive approximation, as 

per the elegant method of Landau & Lifshitz.  In the first case the substitution of 

the solution given by equation (11) in equation (10) provides the following two 

differential equations in a(t) and b(t), up to first order  in ε;    

           

0
2

1
2

0
2

1
2

0

0





ahbb

bhba








          (12) 

 If we desire solutions for a and b in the form  gtexp , to cause resonance 

effect, on use of such form we arrive at the equations, 

0
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2
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0
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         (13) 

 Now the compatibility conditions turn out to be  





















 2

2

0

2

2

1

4

1
hg .            (14) 

The requirement for on-set of instability is that, g must be real, i.e. 02g , which 

implies that the range of instability is  

0 0

1 1

2 2
h h     .           (15) 

The same process can be repeated on inclusion of the terms with frequency 

around 3ω0, in the solution (11), for which the solution will read as; 

 

0 0 0 0 1 0 1 0

1 1 1 1
cos sin cos3 sin 3

2 2 2 2
x a t b t a t b t       

       
              

       

. (16) 
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In order to obtain the limit of instability (range of resonance) the coefficients a 

and b may be treated as constants here.   

 Substituting solution (16) into equation (10) and retaining terms involving 

factors upto 
2 , we get,  

2 2 2

0 0 0 0 0 1 0

2 2 2

0 0 0 0 0 1 0

2 2

0 0 0 1 0

2 2

0 0 0 1 0

1 1 1 1
cos

4 2 2 2

1 1 1 1
sin

4 2 2 2

1 1
8 cos3

2 2

1 1
8 sin 3 0.

2 2

a h a h a t

b h b h b t

h a a t

h b b t

      

      

   

   

    
         

    

    
         

    

   
    

   

   
    

   

        (17)

 This equation demands that the coefficient of sine and cosine functions in 
each term separately vanishes. The last two terms give,  

     

0

1

0

1

16

.
16

ha
a

hb
b





             (18) 

 And the first two equations lead to the pair of relations given by the 

equations. 

    ,0
324

1

2

1
2

0

2
22

00 

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h

h           (19) 

which has the solution     .
322

0

2

00 


hh
           (20) 

 In the next step let us include cos 5ω0t term in the solution, so that it will 

read  
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0 0

1 1

2 2

x= cos sin
2 2

cos3 sin 3
2 2

cos5 sin 5 .
2 2

o o

o o

o o

a t b t

a t b t

a t b t
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      

   

       (21) 

 Upon use of this solution in equation (10) and retaining the terms involving 

trigonometric functions with argument up to 05 t , one arrives at an equation as a 

sum of six terms involving sine and cosine functions of different arguments. And 

validity of the equation therefore demands that; the coefficient of each periodic 

function separately must vanish.  This leads to the following six equations, 

namely,  

   

2 2 2

2 0 0 0 1
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 


 



 
    

 

 
    

        
(22) 

From equation (22e) and (22f), we get 1
2

48

a h
a   and 1

2
48

b h
b  . 

Neglecting 
2  and 0   in comparison to

2

0 ; similarly from eqn.(22c) 

and equation (22d), we get,  
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and 

2

0 0

1 2

2

0 0

1 2

1
1

2 16 96 8
8

96

1
1 .

2 16 96 8
8

96

b h b h h
b

h

a h a h h
a

h

 
    

   
 

 

 
    

   
 

 

   

From equation (22a) and equation (22b), consistency condition demands 

that  

2 2 22 2

0 0

0 1 0.
2 4 32 96 8

h h h 
 

 
     

 
 

Since we intend to retain terms up to h
3
, only,    

2 2 22

0 0
0 0.

2 4 32

h h 
               (23) 

The solution of this equation for ε gives,    

2
3

0

3
.

2 32 128

h h
h 

 
    

 
         (24) 

The ranges of instability for the presence of different modes of parametric 

vibrations are clearly indicated in the equation above. 

 The solution says that resonant modes with frequencies ω0, and its odd 

multiples do simultaneously exist, with the range of resonance specified by 

equation (24). 

 However, locking in takes places at different mode, as we would see below, 

in presence of damping calling for definite, threshold driving amplitude. 

5. Damping and Threshold Driving Amplitude 

As pointed out in section (3), the modes of vibrations of a stretched string in 

Melde‟s experiment, with periodic variation of tensile strength due to action of 

external agency was first studied by Rayleigh [11] and subsequently by 

Raman[12] 
 
and both the authors used Mathieu‟s equation for their analysis.  

However, these early pioneers did not designate the problems as a case of 
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parametric resonance. Nevertheless, they arrived upon a number of important 

conclusions out of their analysis. 

It may be noted from the form of solution given by equation (6), the motion 

that results from parametric excitation is unstable and grows exponentially with 

time.   This aspect has been emphasized by Rowland [7] through graphical 

demonstration, of course in their case, in presence of non-linearity.   This author 

clearly states that damping results in the solution eventually approaching a steady 

state. Of course, this was predicted by Raman[12]  as pointed out by Rowland[7]. 

Both Rayleigh and Raman used a modified Mathieu‟s equation of the form, (in 

our notation)  

     2

0 1 cos 0.x x h t x                (25) 

The steady state conditions which they obtain are identical with our results 

for range of instability with an additional damping term. 

Damping introduces a further consequence with greater relevance for the 

present context of mode-locking.   It is a matter of observation that mode-locking 

at definite higher frequencies occurs on blowing the pipe or conch shell at 

increasing blowing pressure, i.e. blowing amplitude subject to a certain minimum 

(threshold), characteristic of each case.  An explanation of this requirement seems 

to peep in Raman‟s 1912 work [12]. Raman states, (at page -28 of the paper) that 

remarkable changes are observed when the tension was smaller still.  The 

damping was large and a steady motion was possible when the amplitude 

exceeded a certain minimum value.  Of course, Raman takes note of such 

observations while dealing with theof vibration of strings.   But the phenomenon 

becomes pronounced as a daily experience in the lips of the player blowing pipe, 

conical horn or conch shell.  It is most distinctly felt in blowing of the Kalingan 

horn (Kāhāli) and conch shell. 

A precise, but elegant explanation of the phenomenon is found in Landau 

et.al.‟s classic text[1].There authors mention that parametric resonance is 

maintained in presence of a slight friction, with a rather narrower region of 

instability. In fact friction introduces a damping of amplitude  of oscillation as

te 
. Hence the amplification of oscillations in parametric resonance is as 

  tg exp .  And the instability is to be decided by the condition, 0g   

Therefore, one gets, in the lowest approximation,  
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2 2

2 2

0 0

1 1
4 4

2 2
h h    

      
          

         

        (26) 

 It is evident from equation (26) that resonance is possible not for any 

arbitrarily small driving amplitude h, but only for h, exceeding a threshold value 

h0, given by  

    0

0

4
h




                 (27) 

 Only 0cos
2

t



 

 
 

 and 0sin
2

t



 

 
 

 oscillators are excited with this 

threshold.  Similar expression can be derived for higher approximations holding 

the excitation (locking-in) of modes with  03
2

t



 

 
 

 and 05
2

t



 

 
 

 

frequencies. 

The origin of approach is the time variation of the coefficients, and hence 

the differential equations in a and b as given in equation (12).  But equation (12) 

stands only for approximation, allowing only 0cos
2

t



 

 
 

  and 

0sine
2

t



 

 
 

 in the solution. Upon including 0cos3
2

t



 

 
 

 and its sine 

companion; and also 0cos5
2

t



 

 
 

 and its companion term, given by equation 

(20), one confronts at least three pairs of amplitudes (a0, b0), (a1, b1) and (a2, b2). 

Of course, in principle, all of them are time varying.  But we should note that, the 

coefficients a1, a2, and b1, b2 are finally rendered in terms of a0 and b0 

respectively.  Further, they are of the order of h and h
2
. So, to avoid complicacy 

of calculation, not sacrificing, the seminal results, we consider up to the first 

derivative of the time variation of a0 and b0 only.  As a result, equation (22a) and 

equation (22b) modified with one additional term of 0a  and 
0b respectively;  read     
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and

2 2 2

2 0 0 0 1

0 0 0 0 0 0

2 2 2

2 0 0 0 1

0 0 0 0 0 0

2 0
2 2 2

2 0
2 2 2

b h b h
a b b

a h a h
b a a

 
  

 
  

 
       

 

 
      

     

.       (28) 

They further simplify, with a(t) ≈ exp(gt) ,to 

and

0
3224

2

0
3224

2

0

2

0

2

0

2

0

2

0
0000

0

2

0

2

0

2

0

2

0
0000





ahaha
agb

bhbhb
bga







                 (29) 

 In presence of damping, as mentioned earlier, g is to be replaced by 

(   ) and condition of instability       or     be imposed. Upon 

substitution of these conditions, equation (28) is recast as,  

    

2

0 0

0

2

0 0

0

2
2 32

2 .
2 32

h h
a

h h
b

 
 

 
 

 
   

 

 
   

 

          (30) 

Now the compatibility condition demands that  

    

2
2 2 2

2 20 04
4 32

h h 
 

 
   

 
          (31) 

or   

22

2 20 0 4 .
32 2

h h 
 

   
      

  
         (32) 

Hence the range of instability is given by 

2 22 2
2 20 0 0 04 4

2 32 2 32

h h h h   
  

   
               

      
   

       (33) 

We have to resort to limit ε=0, for deciding the threshold. Using it in 

equation (31), we obtain,  
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 

4 2 2 2

20 0

2
4 0

432

h h 
              (34) 

This may be rewritten as,  

 

4 2 2

2 2

0

8 4
0

3232

h h 


             (35) 

When solved for h
2
,  

2 2

2

0

8 8 1
16 4

h 


  

          (36) 

Now expanding the quantity under radical sign as a binomial series we have,  

2 2 4 6

2 4 6

0 0 0

.......
16 16 128

h   

  

 
    
 

                (37) 

One may check that in the lowest approximation, retaining only the term in

2  one gets, 0

0

4
h




  , as decided by Landau et.al. 

Equation (36) further shows that the threshold amplitude of the driving force 

gradually increases on inclusion of higher order terms in i.e. for excitation of 

higher modes in the „locking-in‟ process. 

The formalism discussed in this paper further demonstrates that the “lock -

in” frequency may slightly vary from the exact odd multiples of the natural 

frequency by the difference
2

n
. Our experimental analysis of spectrum for both 

cylindrical pipes and conch- shell supports this theoretical model.   It is worth 

pointing out here that Fletcher
16

  comes to a similar conclusion, while giving the 

“lock-in” frequency as  

    i if i                 (38) 

where  fi is the i
th

 locked-in frequency, ω, is the natural frequency and i  , is a 

small difference.   However, equation (38) given by Fletcher fails to explain why 
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only the odd multiple frequencies appear in the mode-locking as experimentally 

observed by us. 

6.  Conclusion 

„Parametric resonance‟ and „mode-locking‟ are specific phenomena dealt in 

mechanics and acoustics respectively. But they do also occur in fields beyond 

their original identity, as indicated in the introduction. We have made an attempt 

in this work to use the theory of parametric resonance to explain the phenomenon 

of mode-locking in acoustics, particularly that appearing in blowing of pipes and 

conch shell; the details of spectral characteristic of which have been reported 

recently
13

. In this paper we have presented only the sample spectrum of our 

observation along with the data table for a lip-driven tube. Our formalism proves 

effective in explaining not only the mode-locking at odd harmonics of the 

fundamental for systems under test, but also the existence of threshold driving 

amplitude. This is a simpler and more quantitative, as well as complete 

explanation than the earlier ones put forth by Fletcher, which have been briefly 

touched in the text.  
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